Sunday, 10 September 2017

3 Tydperk Bewegende Gemiddelde Voorspelling Sakrekenaar


Bewegende gemiddelde Hierdie voorbeeld leer jy hoe om die bewegende gemiddelde van 'n tydreeks in Excel te bereken. 'N bewegende avearge gebruik te stryk onreëlmatighede (pieke en dale) om maklik tendense herken. 1. In die eerste plek kan 'n blik op ons tyd reeks. 2. Klik op die blad Data, kliek Data-analise. Nota: cant vind die Data-analise knoppie Klik hier om die analise ToolPak add-in te laai. 3. Kies bewegende gemiddelde en klik op OK. 4. Klik op die insette Range boks en kies die reeks B2: M2. 5. Klik op die boks interval en tik 6. 6. Klik in die uitset Range boks en kies sel B3. 8. Teken 'n grafiek van hierdie waardes. Verduideliking: omdat ons die interval stel om 6, die bewegende gemiddelde is die gemiddeld van die vorige 5 datapunte en die huidige data punt. As gevolg hiervan, is pieke en dale stryk uit. Die grafiek toon 'n toenemende tendens. Excel kan nie bereken die bewegende gemiddelde vir die eerste 5 datapunte, want daar is nie genoeg vorige datapunte. 9. Herhaal stappe 2 tot 8 vir interval 2 en interval 4. Gevolgtrekking: Hoe groter die interval, hoe meer die pieke en dale is glad nie. Hoe kleiner die interval, hoe nader die bewegende gemiddeldes is om die werklike data punte. Hou jy van hierdie gratis webwerf Deel asseblief hierdie bladsy op GoogleMoving Gemiddeld vooruitskatting Inleiding. Soos jy kan raai ons is op soek na 'n paar van die mees primitiewe benaderings tot vooruitskatting. Maar hopelik dit is ten minste 'n waardevolle inleiding tot sommige van die rekenaar kwessies wat verband hou met die implementering van voorspellings in sigblaaie. In dié opsig sal ons voortgaan deur te begin by die begin en begin werk met bewegende gemiddelde voorspellings. Bewegende gemiddelde voorspellings. Almal is vertroud met bewegende gemiddelde voorspellings ongeag of hulle glo hulle is. Alle kollege studente doen dit al die tyd. Dink aan jou toetspunte in 'n kursus waar jy gaan vier toetse gedurende die semester het. Kom ons neem aan jy het 'n 85 op jou eerste toets. Wat sou jy voorspel vir jou tweede toetstelling Wat dink jy jou onderwyser sou Ongeag voorspel vir jou volgende toetstelling Wat dink jy jou vriende kan voorspel vir jou volgende toetstelling Wat dink jy jou ouers kan voorspel vir jou volgende toetstelling al die blabbing jy kan doen om jou vriende en ouers, hulle en jou onderwyser is baie geneig om te verwag dat jy iets kry in die gebied van die 85 wat jy nou net gekry. Wel, nou kan aanneem dat ten spyte van jou self-bevordering van jou vriende, jy oorskat jouself en vind jy minder vir die tweede toets te studeer en so kry jy 'n 73. Nou wat is al die betrokkenes en onbekommerd gaan verwag jy sal op jou derde toets te kry Daar is twee baie waarskynlik benaderings vir hulle om 'n skatting, ongeag of hulle dit sal met julle deel te ontwikkel. Hulle mag sê om hulself, quotThis man is altyd waai rook oor sy intelligensie. Hes gaan na 'n ander 73 as hes gelukkig te kry. Miskien sal die ouers probeer meer ondersteunend te wees en sê, quotWell, tot dusver youve gekry 'n 85 en 'n 73, so miskien moet jy dink oor hoe om oor 'n (85 73) / 2 79. Ek weet nie, miskien as jy minder gedoen partytjies en werent swaaiende die mol al oor die plek en as jy begin doen 'n baie meer studeer jy kan kry 'n hoër score. quot Beide van hierdie vooruitskattings eintlik bewegende gemiddelde voorspellings. Die eerste is net met jou mees onlangse telling tot jou toekomstige prestasie te voorspel. Dit staan ​​bekend as 'n bewegende gemiddelde vooruitskatting gebruik van een tydperk van data. Die tweede is ook 'n bewegende gemiddelde voorspelling, maar die gebruik van twee periodes van data. Kom ons neem aan dat al hierdie mense breker op jou groot gees soort het dronk jy af en jy besluit om goed te doen op die derde toets vir jou eie redes en 'n hoër telling in die voorkant van jou quotalliesquot sit. Jy neem die toets en jou telling is eintlik 'n 89 Almal, insluitende jouself, is beïndruk. So nou het jy die finale toets van die semester kom en soos gewoonlik jy voel die behoefte om almal te dryf in die maak van hul voorspellings oor hoe sal jy doen op die laaste toets. Wel, hopelik sien jy die patroon. Nou, hopelik kan jy die patroon te sien. Wat glo jy is die mees akkurate Whistle Terwyl ons werk. Nou moet ons terugkeer na ons nuwe skoonmaak maatskappy wat begin is deur jou vervreemde halfsuster genoem Whistle Terwyl ons werk. Jy het 'n paar verkope verlede data wat deur die volgende artikel uit 'n sigblad. Ons bied eers die data vir 'n drie tydperk bewegende gemiddelde skatting. Die inskrywing vir sel C6 moet wees Nou kan jy hierdie sel formule af na die ander selle C7 kopieer deur C11. Let op hoe die gemiddelde beweeg oor die mees onlangse historiese data, maar gebruik presies die drie mees onlangse tye beskikbaar wees vir elke voorspelling. Jy moet ook sien dat ons nie regtig nodig om die voorspellings vir die afgelope tyd maak om ons mees onlangse voorspelling ontwikkel. Dit is beslis anders as die eksponensiële gladstryking model. Ive ingesluit die quotpast predictionsquot omdat ons dit sal gebruik in die volgende webblad om voorspellingsgeldigheid meet. Nou wil ek die analoog resultate aan te bied vir 'n periode van twee bewegende gemiddelde skatting. Die inskrywing vir sel C5 moet wees Nou kan jy hierdie sel formule af na die ander selle C6 kopieer deur C11. Let op hoe nou net die twee mees onlangse stukke historiese data gebruik vir elke voorspelling. Weereens het ek die quotpast predictionsquot vir illustratiewe doeleindes en vir latere gebruik in vooruitskatting validering ingesluit. Sommige ander dinge wat van belang om te let. Vir 'n m-tydperk bewegende gemiddelde voorspelling net die m mees onlangse data waardes word gebruik om die voorspelling te maak. Niks anders is nodig. Vir 'n m-tydperk bewegende gemiddelde voorspelling, wanneer quotpast predictionsquot, agterkom dat die eerste voorspelling kom in periode m 1. Beide van hierdie kwessies sal baie belangrik wees wanneer ons ons kode te ontwikkel. Die ontwikkeling van die bewegende gemiddelde funksie. Nou moet ons die kode vir die bewegende gemiddelde voorspelling dat meer buigsaam kan word ontwikkel. Die kode volg. Let daarop dat die insette is vir die aantal periodes wat jy wil gebruik in die vooruitsig en die verskeidenheid van historiese waardes. Jy kan dit stoor in watter werkboek wat jy wil. Funksie MovingAverage (Historiese, NumberOfPeriods) as 'n enkele verkondig en inisialisering veranderlikes Dim punt Soos Variant Dim Counter As Integer Dim Akkumulasie as 'n enkele Dim HistoricalSize As Integer Inisialiseer veranderlikes Counter 1 Akkumulasie 0 bepaling van die grootte van Historiese skikking HistoricalSize Historical. Count Vir Counter 1 Om NumberOfPeriods opbou van die toepaslike aantal mees onlangse voorheen waargeneem waardes Akkumulasie Akkumulasie Historiese (HistoricalSize - NumberOfPeriods toonbank) MovingAverage Akkumulasie / NumberOfPeriods die kode sal in die klas verduidelik. Jy wil die funksie te posisioneer op die sigblad sodat die resultaat van die berekening verskyn waar dit wil die following. A Voorspelling Berekening Voorbeelde A.1 Voorspelling Compute wyse Twaalf metodes van die berekening van voorspellings is beskikbaar. Die meeste van hierdie metodes te voorsien vir 'n beperkte gebruiker beheer. Byvoorbeeld, kan die gewig geplaas op onlangse historiese data of die datum bereik van historiese data gebruik in die berekeninge word vermeld. Die volgende voorbeelde wys die prosedure te kan uitvoer vir elk van die beskikbare voorspelling metodes, gegee 'n identiese stel historiese data. Die volgende voorbeelde gebruik dieselfde 2004 en 2005 verkope data na 'n voorspelling van die verkoop 2006 te produseer. Benewens die voorspelling berekening, elke voorbeeld sluit 'n gesimuleerde 2005 voorspelling vir 'n drie maande holdout tydperk (verwerking opsie 19 3) wat dan gebruik word vir persent van akkuraatheid en beteken absolute afwyking berekeninge (werklike verkope in vergelyking met gesimuleerde voorspelling). A.2 voorspellings oor die prestasie Evalueringskriteria Afhangende van jou keuse van verwerking opsies en op die tendense en patrone bestaande in die verkope data, sal 'n paar voorspellings metodes beter as ander vir 'n gegewe historiese datastel te voer. 'N vooruitskatting metode wat geskik is vir 'n produk mag nie geskik is vir 'n ander produk. Dit is ook onwaarskynlik dat 'n vooruitskatting metode wat goeie resultate lewer in 'n stadium van 'n produkte lewensiklus toepaslike bly deur die hele lewensiklus. Jy kan kies tussen twee metodes om die huidige prestasie van die voorspelling metodes te evalueer. Dit is gemiddelde absolute afwyking (MAD) en Persent van akkuraatheid (POA). Beide van hierdie prestasie-evaluering metodes vereis historiese verkope data vir 'n gebruiker spesifieke tydperk. Hierdie tydperk van die tyd genoem word 'n holdout tydperk of tydperke beste passing (PBF). Die data in hierdie tydperk word gebruik as die grondslag vir die aanbeveling van watter een van die voorspelling metodes om te gebruik in die maak van die volgende voorspelling projeksie. Hierdie aanbeveling is spesifiek vir elke produk, en kan verander van een voorspelling generasie na die volgende. Die twee voorspelling prestasie-evaluering metodes word gedemonstreer in die bladsye wat volg op die voorbeelde van die twaalf voorspelling metodes. A.3 Metode 1 - Gespesifiseerde Persent teenoor verlede jaar Hierdie metode vermeerder verkope data van die vorige jaar deur 'n gebruiker gespesifiseer faktor byvoorbeeld 1.10 vir 'n 10 toename, of 0,97 vir 'n 3 afname. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die gebruiker gespesifiseerde aantal tydperke vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19). A.4.1 Voorspelling Berekening Range van verkope geskiedenis om te gebruik in die berekening van groei faktor (verwerking opsie 2a) 3 in hierdie voorbeeld. Som die laaste drie maande van 2005: 114 119 137 370 Sum dieselfde drie maande van die vorige jaar: 123 139 133 395 Die berekende faktor 370/395 0,9367 Bereken die voorspellings: Januarie 2005 verkoop 128 0,9367 119,8036 of ongeveer 120 Februarie 2005 verkope 117 0.9367 109.5939 of sowat 110 Maart 2005 verkoop 115 0,9367 107,7205 of oor 108 A.4.2 Gesimuleerde Voorspelling Berekening Som die drie maande van 2005 voor holdout tydperk (Julie Augustus, September): 129 140 131 400 Sum dieselfde drie maande vir die vorige jaar: 141 128 118 387 die berekende faktor 400/387 1,033591731 bereken gesimuleerde vooruitsig: Oktober 2004 verkoop 123 1,033591731 127,13178 November 2004 verkope 139 1,033591731 143,66925 Desember 2004 verkoop 133 1,033591731 137,4677 A.4.3 Persent van akkuraatheid Berekening POA ( 127,13178 143,66925 137,4677) / (114 119 137) 100 408,26873 / 370 100 110,3429 A.4.4 Gemiddelde Absolute Afwyking Berekening MAD (127,13178-114 143,66925-119 137.4677- 137) / 3 (13,13178 24,66925 0,4677) / 3 12,75624 A.5 Metode 3 - Verlede jaar vanjaar Hierdie metode kopieë verkoop data van die vorige jaar tot die volgende jaar. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die aantal tydperke vermeld vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19). A.6.1 Voorspelling Berekening Aantal periodes in die gemiddelde (verwerking opsie 4a) 3 ingesluit moet word in hierdie voorbeeld vir elke maand van die voorspelling, die gemiddelde van die vorige drie maande data. Januarie vooruitsig: 114 119 137 370, 370/3 123,333 of 123 Februarie vooruitsig: 119 137 123 379, 379/3 126,333 of 126 Maart vooruitsig: 137 123 126 379, 386/3 128,667 of 129 A.6.2 Gesimuleerde Voorspelling Berekening Oktober 2005 verkope (129 140 131) / 3 133,3333 November 2005 verkope (140 131 114) / 3 128,3333 Desember 2005 verkoop (131 114 119) / 3 121,3333 A.6.3 Persent van akkuraatheid Berekening POA (133,3333 128,3333 121,3333) / (114 119 137) 100 103,513 A.6.4 Gemiddelde Absolute Afwyking Berekening MAD (133,3333-114 128,3333-119 121,3333-137) / 3 14,7777 A.7 Metode 5 - Lineêre die aanpassing Lineêre die aanpassing bereken 'n tendens wat gebaseer is op twee verkope geskiedenis datapunte. Dié twee punte definieer 'n reguit tendens lyn wat geprojekteer in die toekoms. Gebruik hierdie metode met omsigtigheid, as lang afstand voorspellings is aged deur klein veranderinge in net twee datapunte. Vereis verkope geskiedenis: Die aantal periodes in regressie (verwerking opsie 5a), plus 1 plus die aantal tydperke vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19) in te sluit. A.8.1 Voorspelling Berekening Aantal periodes in regressie in te sluit (verwerking opsie 6a) 3 in hierdie voorbeeld vir elke maand van die voorspelling, voeg die toename of afname in die vermelde tydperke voor tydperk die vorige tydperk holdout. Gemiddelde van die vorige drie maande (114 119 137) / 3 123,3333 Opsomming van die vorige drie maande met gewig beskou (114 1) (119 2) (137 3) 763 verskil tussen die waardes 763-123,3333 (1 2 3) 23 verhouding (12 22 32) - 2 14 Maart - 2 Desember VALUE1 verskil / verhouding 23/2 11,5 VALUE2 Gemiddeld - waarde1 verhouding 123,3333-11,5 2 100,3333 Voorspelling (1 N) waarde1 waarde2 4 11.5 100,3333 146,333 of 146 Voorspelling 5 11.5 100,3333 157,8333 of 158 voorspel 6 11.5 100,3333 169,3333 of 169 A.8.2 Gesimuleerde Voorspelling Berekening Oktober 2004 verkope: Gemiddeld van die vorige drie maande (129 140 131) / 3 133,3333 Opsomming van die vorige drie maande met gewig beskou (129 1) (140 2) (131 3) 802 verskil tussen die waardes 802-133,3333 (1 2 3) 2 verhouding (12 22 32) - 2 14 Maart - 2 Desember VALUE1 verskil / verhouding 02/02 1 VALUE2 Gemiddeld - waarde1 verhouding 133,3333-1 2 131,3333 Voorspelling (1 N) waarde1 waarde2 4 1 131,3333 135,3333 November 2004 verkope gemiddeld van die vorige drie maande (140 131 114) / 3 128,3333 Opsomming van die vorige drie maande met gewig beskou (140 1) (131 2) (114 3) 744 verskil tussen die Waarden 744-128,3333 (1 2 3) -25,9999 VALUE1 verskil / verhouding -25,9999 / 2 -12,9999 VALUE2 Gemiddeld - waarde1 verhouding 128,3333 - (-12,9999) 2 154,3333 Voorspelling 4 -12,9999 154,3333 102,3333 Desember 2004 verkoop gemiddeld van die vorige drie maande ( 131 114 119) / 3 121,3333 Opsomming van die vorige drie maande met gewig beskou (131 1) (114 2) (119 3) 716 verskil tussen die waardes 716-121,3333 (1 2 3) -11,9999 VALUE1 verskil / verhouding -11,9999 / 2 -5,9999 VALUE2 Gemiddeld - waarde1 verhouding 121,3333 - (-5,9999) 2 133,3333 Voorspelling 4 (-5,9999) 133,3333 109,3333 A.8.3 Persent van akkuraatheid Berekening POA (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8.4 Gemiddelde Absolute afwyking Berekening MAD (135,33-114 102,33-119 109,33-137) / 3 21,88 A.9 Metode 7 - tweede graad aanpassing lineêre regressie bepaal waardes vir a en b in die vooruitsig formule Y 'n bX met die doel van pas 'n reguit lyn te die verkope geskiedenis data. Tweede graad benadering is soortgelyk. Maar hierdie metode bepaal waardes vir a, b, en c in die vooruitsig formule Y 'n bX cX2 met die doel van pas 'n kurwe na die verkope geskiedenis data. Hierdie metode dalk mag wees bruikbare wanneer 'n produk is in die oorgang tussen stadiums van 'n lewensiklus. Byvoorbeeld, wanneer 'n nuwe produk beweeg van inleiding tot groeistadiums, kan die verkope tendens versnel. As gevolg van die tweede orde termyn, kan die voorspelling vinnig nader oneindigheid of daal tot nul (afhangende van of koëffisiënt c positief of negatief). Daarom is hierdie metode is net nuttig in die kort termyn. Voorspelling spesifikasies: Die formules vind a, b, en c aan 'n kromme presies drie punte aan te pas. Jy spesifiseer N in die verwerking opsie 7a, die aantal tydperke van data te versamel in elk van die drie punte. In hierdie voorbeeld N 3. Daarom werklike verkope data vir April tot Junie is gekombineer in die eerste punt, Q1. Julie tot September word bymekaar getel om die 2de kwartaal skep, en Oktober tot Desember som tot Q3. Die kurwe sal toegerus wees om die drie waardes Q1, Q2, en Q3. Vereis verkope geskiedenis: 3 N periodes vir die berekening van die voorspelling plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). Aantal periodes om (verwerking opsie 7a) 3 in hierdie voorbeeld gebruik van die vorige (3 N) maande in drie maande blokke sluit in: Q1 (April-Junie) 125 122 137 384 Q2 (Julie-September) 129 140 131 400 Q3 ( Oktober-Desember) 114 119 137 370 die volgende stap behels die berekening van die drie koëffisiënte a, b, en C om gebruik te word in die voorspelling formule Y 'n bX cX2 (1) Q1 n bX cX2 (waar X 1) ABC (2) Q2 'n bX cX2 (waar X 2) 'n 2b 4C (3) Q3 n bX cX2 (waar X 3) 'n 3b 9c Los die drie vergelykings gelyktydig te b, a, en c te vind: Trek vergelyking (1) van vergelyking (2) en op te los vir b (2) - (1) Q2 - Q1 b 3c plaasvervanger hierdie vergelyking vir b in vergelyking (3) (3) Q3 n 3 (Q2 - Q1) - 3c c slotte, vervang hierdie vergelykings vir a en b in vergelyking (1) Q3 - 3 (Q2 - Q1) (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) / 2 Die tweede graad aanpassing metode bereken a, b, en c soos volg: 'n Q3 - 3 (Q2 - Q1) 370 - 3 (400-384) 322 c (Q3 - Q2) (Q1 - Q2) / 2 (370-400) (384-400) / 2 -23 b (Q2 - Q1) - 3c (400-384) - (3 -23) 85 Y 'n bX cX2 322 85 X (-23) X2 Januarie deur middel van Maart voorspel (X4): (322 340-368) / 3 294/3 98 per periode April deur middel Junie voorspelling (X5): (322 425-575) / 3 57,333 of 57 per periode Julie deur middel van September voorspelling (X6): (322 510-828) / 3 1.33 of 1 per periode Oktober deur middel van Desember (X7) (322 595-1127 / 3 -70 A.9.2 Gesimuleerde Voorspelling Berekening Oktober, November en Desember 2004 verkope: Q1 (Januarie-Maart) 360 Q2 (April-Junie) 384 Q3 (Julie-September) 400 'n 400-3 (384-360) 328 c (400-384) (360-384) / 2 -4 b (384-360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Persent van akkuraatheid Berekening POA (136 136 136) / (114 119 137) 100 110,27 A.9.4 Gemiddelde Absolute Afwyking Berekening MAD (136 - 114 136 - 119 136 - 137) / 3 13,33 A.10 Metode 8 - Veelsydige Metode Die buigbare metode (persent oor N maande voor) is soortgelyk aan Metode 1, persent oor verlede jaar. Beide metodes vermeerder verkope data uit 'n vorige tydperk deur 'n gebruiker gespesifiseer faktor, dan projek wat lei na die toekoms. In die persent meer as verlede jaar metode, is die projeksie gebaseer op data van die dieselfde tydperk in die vorige jaar. Die buigbare metode voeg die vermoë om 'n tydperk anders as die ooreenstemmende tydperk verlede jaar om te gebruik as die basis vir die berekening spesifiseer. Vermenigvuldigingsfaktor. Byvoorbeeld, spesifiseer 1.15 in die verwerking opsie 8b die vorige verkope geskiedenis data te verhoog deur 15. Base tydperk. Byvoorbeeld, sal N 3 veroorsaak dat die eerste skatting word wat gebaseer is op verkope data in Oktober 2005. Minimum verkope geskiedenis: Die gebruiker gespesifiseerde aantal periodes terug na die basis tydperk, plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie ( PBF). A.10.4 Mean Absolute Afwyking Berekening MAD (148-114 161-119 151-137) / 3 30 A.11 Metode 9 - Geweegde bewegende gemiddelde geweegde bewegende gemiddelde (WBA) metode is soortgelyk aan Metode 4, bewegende gemiddelde (MA) . Maar met die Geweegde bewegende gemiddelde jy kan ongelyke gewigte toewys aan die historiese data. Die metode bereken 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. Meer onlangse data word gewoonlik toegeken 'n groter gewig as ouer data, so dit maak WBG meer reageer op veranderinge in die vlak van verkope. Maar voorspel vooroordeel en sistematiese foute nog steeds plaasvind wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte eerder as vir produkte in die groei of veroudering stadiums van die lewensiklus. N die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Byvoorbeeld, spesifiseer N 3 in die verwerking opsie 9a tot die mees onlangse drie tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. 'N Groot waarde vir N (soos 12) vereis meer verkope geskiedenis. Dit lei tot 'n stabiele vooruitsig, maar sal stadig om skofte te erken in die vlak van verkope wees. Aan die ander kant, sal 'n klein waarde vir N (soos 3) vinniger om skofte in die vlak van verkope te reageer, maar die voorspelling kan so wyd dat produksie kan nie reageer op die verskille wissel. Die gewig wat aan elk van die historiese data tydperke. Die opgedra gewigte moet totaal tot 1.00. Byvoorbeeld, wanneer n 3, toewys gewigte van 0.6, 0.3, en 0.1, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). MAD (133,5-114 121,7-119 118,7-137) / 3 13.5 A.12 Metode 10 - Lineêre Smoothing Hierdie metode is soortgelyk aan Metode 9, Geweegde bewegende gemiddelde (WBA). Maar in plaas van na willekeur toeken gewigte aan die historiese data, 'n formule word gebruik om gewig wat lineêr afneem toewys en som tot 1.00. Die metode bereken dan 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. As geld vir alle lineêre bewegende gemiddelde vooruitskatting tegnieke, voorspelling vooroordeel en sistematiese foute kom voor wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte eerder as vir produkte in die groei of veroudering stadiums van die lewensiklus. N die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Dit is vermeld in die verwerking opsie 10a. Byvoorbeeld, spesifiseer N 3 in die verwerking opsie 10b tot die mees onlangse drie tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. Die stelsel sal outomaties die gewigte na die historiese data wat lineêr afneem en som toewys aan 1.00. Byvoorbeeld, wanneer n 3, die stelsel sal gewigte van 0,5, 0,3333, en 0.1 wys, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). A.12.1 Voorspelling Berekening Aantal periodes in glad gemiddelde (verwerking opsie 10a) in te sluit 3 in hierdie voorbeeld verhouding vir een periode voor 3 / (N2 N) / 2 3 / (32 3) / 2 3/6 0,5 verhouding vir twee tydperke voor 2 / (N2 N) / 2 2 / (32 3) / 2 2/6 0,3333 .. verhouding vir drie periodes voor 1 / (N2 N) / 2 1 / (32 3) / 2 1/6 0,1666. . Januarie vooruitsig: 137 0.5 119 1/3 114 1/6 127,16 of 127 Februarie vooruitsig: 127 0.5 137 1/3 119 1/6 129 Maart vooruitsig: 129 0.5 127 1/3 137 1/6 129,666 of 130 A.12.2 gesimuleerde Voorspelling Berekening Oktober 2004 verkoop 129 1/6 140 2/6 131 3/6 133,6666 November 2004 verkope 140 1/6 131 2/6 114 3/6 124 Desember 2004 verkoop 131 1/6 114 2/6 119 3/6 119,3333 A.12.3 Persent van akkuraatheid Berekening POA (133,6666 124 119,3333) / (114 119 137) 100 101,891 A.12.4 Gemiddelde Absolute Afwyking Berekening MAD (133,6666-114 124 - 119 119,3333-137) / 3 14,1111 A.13 Metode 11 - eksponensiële Gladstryking Hierdie metode is soortgelyk aan metode 10, Lineêre Smoothing. In Lineêre Smoothing ken die stelsel gewigte aan die historiese data wat lineêr afneem. In eksponensiële gladstryking, die stelsel wys gewigte wat eksponensieel verval. Die eksponensiële gladstryking vooruitskatting vergelyking is: voorspel 'n (Vorige werklike verkope) (1 - a) vorige skatting Die voorspelling is 'n geweegde gemiddeld van die werklike verkope van die vorige tydperk en die voorspelling van die vorige tydperk. n is die gewig van toepassing op die werklike verkope vir die vorige tydperk. (1 - a) is die toepassing op die voorspelling vir die vorige tydperk gewig. Geldige waardes vir 'n verskeidenheid 0-1, en val gewoonlik tussen 0.1 en 0.4. Die som van die gewigte is 1.00. 'n (1 - a) 1 Jy moet 'n waarde toeken vir die glad konstante, 'n. As jy nie waardes vir die glad konstante hoef te ken, die stelsel bereken 'n veronderstelde waarde wat gebaseer is op die aantal periodes van verkope geskiedenis wat in die verwerking opsie 11a. n die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Geldige waardes vir 'n verskeidenheid van 0 tot 1. N die reeks van verkope geskiedenis data in die berekeninge te sluit. Oor die algemeen 'n jaar van verkope geskiedenis data is voldoende om die algemene vlak van verkope te skat. Vir hierdie voorbeeld, 'n klein waarde vir N (N 3) is gekies om die handleiding berekeninge wat nodig is om die resultate te verifieer verminder. Eksponensiële gladstryking kan 'n voorspelling gebaseer op so min as een historiese data punt te genereer. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). A.13.1 Voorspelling Berekening Aantal periodes in glad gemiddelde (verwerking opsie 11a) 3 sluit, en alfa faktor (verwerking opsie 11b) leeg in hierdie voorbeeld 'n faktor vir die oudste verkope data 2 / (11), of 1 toe Alpha is gespesifiseerde n faktor vir die 2de verkope data oudste 2 / (12), of alfa wanneer alfa 'n faktor is wat vir die 3de oudste verkope data 2 / (13), of alfa wanneer alfa 'n faktor is wat vir die mees onlangse verkope data 2 / (1n), of alfa wanneer alfa gespesifiseer November Sm. Gem. 'n (Oktober Werklike) (1 - a) Oktober Sm. Gem. 1 114 0 0 114 Desember Sm. Gem. 'n (November Werklike) (1 - a) November Sm. Gem. 03/02 119 1/3 114 117,3333 Januarie voorspel '(Desember Werklike) (1 - a) Desember Sm. Gem. 2/4 137 2/4 117,3333 127,16665 of 127 Februarie Voorspelling Januarie Voorspelling 127 Maart Voorspelling Januarie Voorspelling 127 A.13.2 Gesimuleerde Voorspelling Berekening Julie 2004 Sm. Gem. 02/02 129 129 Augustus Sm. Gem. 03/02 140 1/3 129 136,3333 September Sm. Gem. 2/4 131 2/4 136,3333 133,6666 Oktober 2004 verkope September Sm. Gem. 133.6666 Augustus 2004 Sm. Gem. 02/02 140 140 September Sm. Gem. 03/02 131 1/3 140 134 Oktober Sm. Gem. 2/4 114 2/4 134 124 November 2004 verkope September Sm. Gem. 124 September 2004 Sm. Gem. 02/02 131 131 Oktober Sm. Gem. 03/02 114 1/3 131 119,6666 November Sm. Gem. 2/4 119 2/4 119,6666 119,3333 Desember 2004 verkope September Sm. Gem. 119,3333 A.13.3 Persent van akkuraatheid Berekening POA (133,6666 124 119,3333) / (114 119 137) 100 101,891 A.13.4 Gemiddelde Absolute Afwyking Berekening MAD (133,6666-114 124 - 119 119,3333-137) / 3 14,1111 A.14 Metode 12 - eksponensiële Smoothing met Trend en Seisoenaliteit Hierdie metode is soortgelyk aan metode 11, eksponensiële Gladstryking in daardie 'n reëlmatige gemiddelde bereken word. Maar Metode 12 sluit ook 'n term in die vooruitskatting vergelyking met 'n reëlmatige tendens te bereken. Die voorspelling is saamgestel uit 'n reëlmatige het gemiddeld aangepas vir 'n lineêre tendens. Wanneer vermeld in die opsie verwerking, is die voorspelling ook aangepas vir die seisoen. n die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Geldige waardes vir Alpha wissel van 0 tot 1. b die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die tendens komponent van die skatting. Geldige waardes vir beta wissel van 0 tot 1. Of 'n seisoenale indeks is van toepassing op die voorspelling A en B is onafhanklik van mekaar. Hulle hoef nie te voeg tot 1.0. Minimum vereiste verkope geskiedenis: twee jaar plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). Metode 12 gebruik twee eksponensiële gladstryking vergelykings en 'n eenvoudige gemiddelde tot 'n reëlmatige gemiddelde, 'n reëlmatige tendens, en 'n eenvoudige gemiddelde seisoenale faktor te bereken. A.14.1 Voorspelling Berekening A) 'n eksponensieel stryk gemiddelde MAD (122,81-114 133,14-119 135,33-137) / 3 8.2 A.15 Evaluering van die voorspellings Jy kan vooruitskatting metodes kies om soveel as twaalf voorspellings vir elke produk te genereer. Elke vooruitskatting metode sal waarskynlik 'n effens ander projeksie te skep. Wanneer duisende produkte word voorspel, is dit onprakties om 'n subjektiewe besluit oor watter een van die voorspellings te gebruik in jou planne vir elk van die produkte te maak. Die stelsel evalueer outomaties prestasie vir elk van die voorspelling metodes wat jy kies, en vir elk van die voorspel produkte. Jy kan kies tussen twee prestasiekriteria, Gemiddelde Absolute Afwyking (MAD) en Persent van akkuraatheid (POA). MAD is 'n maatstaf van voorspelling fout. POA is 'n maatstaf van voorspelling vooroordeel. Beide van hierdie prestasie-evaluering tegnieke vereis werklike verkope geskiedenis data vir 'n gebruiker spesifieke tydperk. Hierdie tydperk van die onlangse geskiedenis is bekend as 'n holdout tydperk of tydperke beste passing (PBF). Om die prestasie van 'n vooruitskatting metode meet, gebruik die voorspelling formules om 'n voorspelling vir die historiese holdout tydperk na te boots. Daar sal gewoonlik wees verskille tussen werklike verkope data en die gesimuleerde voorspelling vir die holdout tydperk. Wanneer verskeie voorspelling metodes gekies word, dieselfde proses vind vir elke metode. Veelvuldige voorspellings word bereken vir die holdout tydperk, en in vergelyking met die bekende verkope geskiedenis vir dieselfde tydperk. Die vooruitskatting metode vervaardiging van die beste wedstryd (beste passing) tussen die voorspelling en die werklike verkope gedurende die holdout tydperk word aanbeveel vir gebruik in jou planne. Hierdie aanbeveling is spesifiek vir elke produk, en kan verander van een voorspelling generasie na die volgende. A.16 Mean Absolute Afwyking (MAD) MAD is die gemiddelde (of gemiddelde) van die absolute waardes (of omvang) van die afwykings (of foute) tussen werklike en voorspelde data. MAD is 'n maatstaf van die gemiddelde grootte van foute te verwag, gegewe 'n vooruitskatting metode en data geskiedenis. Omdat absolute waardes word gebruik in die berekening, moenie positiewe foute nie kanselleer negatiewe foute. Wanneer vergelyk verskeie voorspelling metodes, het die een met die kleinste MAD getoon die mees betroubare vir daardie produk vir daardie holdout tydperk te wees. Wanneer die voorspelling is onbevooroordeelde en foute is normaal verdeel, daar is 'n eenvoudige wiskundige verhouding tussen MAD en twee ander algemene maatstawwe van verspreiding, gemiddeldes en standaardafwykings Squared Fout: A.16.1 Persent van akkuraatheid (POA) persent van akkuraatheid (POA) is 'n mate van voorspelling vooroordeel. Wanneer voorspellings is konsekwent te hoog, voorraad ophoop en voorraad koste styg. Wanneer voorspellings is konsekwent twee lae, is voorrade verteer en kliëntediens weier. 'N voorspelling wat 10 eenhede te laag is, dan 8 eenhede te hoog is, dan 2 eenhede te hoog is, sal 'n onbevooroordeelde voorspelling wees. Die positiewe dwaling van 10 is gekanselleer deur negatiewe foute van 8 en 2. Fout Werklike - Voorspelling Wanneer 'n produk kan gestoor word in voorraad, en wanneer die voorspelling is onbevooroordeelde, kan 'n klein hoeveelheid van veiligheid voorraad gebruik word om die foute te buffer. In hierdie situasie, is dit nie so belangrik om voorspelling foute uit te skakel as dit is om onbevooroordeelde voorspellings te genereer. Maar in diens nywerhede, sal die bogenoemde situasie word beskou as drie foute. Die diens sal word te min personeel in die eerste tydperk, dan veel personeel vir die volgende twee tydperke. In dienste, die grootte van voorspelling foute is gewoonlik meer belangrik as wat voorspel vooroordeel. Die opsomming oor die holdout tydperk kan positiewe foute negatiewe foute te kanselleer. Wanneer die totaal van werklike verkope die totaal van vooruitskatting verkope oorskry, die verhouding is groter as 100. Natuurlik, dit is onmoontlik meer as 100 akkuraat te wees. Wanneer 'n voorspelling is onbevooroordeelde, sal die POA verhouding Wees daarom 100. Dit is meer wenslik wees 95 akkuraat as om 110 akkurate. Die POA kriteria kies die vooruitskatting metode wat 'n POA verhouding naaste aan 100. Scripting op hierdie bladsy het verhoog inhoud navigasie, maar verander niks aan die inhoud in enige way. Weighted bewegende gemiddelde vooruitskatting metodes: Voor-en nadele Kommentaar Hi, julle moet jul Post. Het gewonder of jy kan uitbrei verdere. Ons gebruik SAP. Daarin is daar 'n keuse wat jy kan kies voordat jy jou voorspelling genoem inisialisering hardloop. As jy hierdie opsie merk kry jy 'n voorspelling gevolg, as jy weer uit te voer voorspel, in dieselfde tydperk, en nie kyk inisialisering die gevolg veranderinge. Ek kan nie uitvind wat dit inisialisering doen. Ek bedoel, mathmatically. Watter voorspelling gevolg is die beste om te red en te gebruik byvoorbeeld. Die veranderinge tussen die twee is nie in die geskatte hoeveelheid maar in die MAD and error, veiligheid voorraad en ROP hoeveelhede. Nie seker of jy SAP gebruik. hi dankie vir die verduideliking so efficient dit te GD. Dankie weer Jaspreet Laat 'n antwoord Kanselleer antwoord Gewildste poste oor Pete Abilla Pete Abilla is die stigter van Shmula. Hy help maatskappye soos Amazon, Zappos, eBay, binneland, en ander koste te verminder en die verbetering van die kliënt ervaar. Hy doen dit deur middel van 'n sistematiese metode vir die identifisering van pyn punte wat 'n impak die kliënt en die besigheid en moedig breë deelname van die maatskappy geassosieerdes hul eie prosesse te verbeter. TagsMoving gemiddeldes - Eenvoudige en Eksponensiële Bewegende Gemiddeldes - Eenvoudige en Eksponensiële Inleiding bewegende gemiddeldes glad die prys data om 'n tendens volgende aanwyser vorm. Hulle het nie die prys rigting voorspel nie, maar eerder die huidige rigting met 'n lag te definieer. Bewegende gemiddeldes lag omdat hulle op grond van vorige pryse. Ten spyte hiervan lag, bewegende gemiddeldes te help gladde prys aksie en filter die geraas. Hulle vorm ook die boustene vir baie ander tegniese aanwysers en overlays, soos Bollinger Bands. MACD en die McClellan Ossillator. Die twee mees populêre vorme van bewegende gemiddeldes is die Eenvoudige bewegende gemiddelde (SMA) en die eksponensiële bewegende gemiddelde (EMA). Hierdie bewegende gemiddeldes gebruik kan word om die rigting van die tendens te identifiseer of definieer potensiaal ondersteuning en weerstand vlakke. Here039s n grafiek met beide 'n SMA en 'n EMO daarop: Eenvoudige bewegende gemiddelde Berekening 'n Eenvoudige bewegende gemiddelde is wat gevorm word deur die berekening van die gemiddelde prys van 'n sekuriteit oor 'n spesifieke aantal periodes. Die meeste bewegende gemiddeldes is gebaseer op sluitingstyd pryse. 'N 5-dag eenvoudig bewegende gemiddelde is die vyf dag som van die sluiting pryse gedeel deur vyf. Soos die naam aandui, 'n bewegende gemiddelde is 'n gemiddelde wat beweeg. Ou data laat val as nuwe data kom beskikbaar. Dit veroorsaak dat die gemiddelde om te beweeg langs die tydskaal. Hieronder is 'n voorbeeld van 'n 5-daagse bewegende gemiddelde ontwikkel met verloop van drie dae. Die eerste dag van die bewegende gemiddelde dek net die laaste vyf dae. Die tweede dag van die bewegende gemiddelde daal die eerste data punt (11) en voeg die nuwe data punt (16). Die derde dag van die bewegende gemiddelde voort deur die val van die eerste data punt (12) en die toevoeging van die nuwe data punt (17). In die voorbeeld hierbo, pryse geleidelik verhoog 11-17 oor 'n totaal van sewe dae. Let daarop dat die bewegende gemiddelde styg ook 13-15 oor 'n driedaagse berekening tydperk. Let ook op dat elke bewegende gemiddelde waarde is net onder die laaste prys. Byvoorbeeld, die bewegende gemiddelde vir die eerste dag is gelyk aan 13 en die laaste prys is 15. Pryse die vorige vier dae laer was en dit veroorsaak dat die bewegende gemiddelde te lag. Eksponensiële bewegende gemiddelde Berekening eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Die gewig van toepassing op die mees onlangse prys hang af van die aantal periodes in die bewegende gemiddelde. Daar is drie stappe om die berekening van 'n eksponensiële bewegende gemiddelde. Eerstens, bereken die eenvoudige bewegende gemiddelde. 'N eksponensiële bewegende gemiddelde (EMA) moet iewers begin so 'n eenvoudige bewegende gemiddelde word gebruik as die vorige period039s EMO in die eerste berekening. Tweede, bereken die gewig vermenigvuldiger. Derde, bereken die eksponensiële bewegende gemiddelde. Die onderstaande formule is vir 'n 10-dag EMO. 'N 10-tydperk eksponensiële bewegende gemiddelde van toepassing 'n 18,18 gewig na die mees onlangse prys. 'N 10-tydperk EMO kan ook 'n 18,18 EMO genoem. A 20-tydperk EMO geld 'n 9,52 weeg om die mees onlangse prys (2 / (201) 0,0952). Let daarop dat die gewig vir die korter tydperk is meer as die gewig vir die langer tydperk. Trouens, die gewig daal met die helfte elke keer as die bewegende gemiddelde tydperk verdubbel. As jy wil ons 'n spesifieke persentasie vir 'n EMO, kan jy hierdie formule gebruik om dit te omskep in tydperke en gee dan daardie waarde as die parameter EMA039s: Hier is 'n spreadsheet voorbeeld van 'n 10-dag eenvoudig bewegende gemiddelde en 'n 10- dag eksponensiële bewegende gemiddelde vir Intel. Eenvoudige bewegende gemiddeldes is reguit vorentoe en verg min verduideliking. Die 10-dag gemiddeld net beweeg as nuwe pryse beskikbaar raak en ou pryse af te laai. Die eksponensiële bewegende gemiddelde begin met die eenvoudige bewegende gemiddelde waarde (22,22) in die eerste berekening. Na die eerste berekening, die normale formule oorneem. Omdat 'n EMO begin met 'n eenvoudige bewegende gemiddelde, sal sy werklike waarde nie besef tot 20 of so tydperke later. Met ander woorde, kan die waarde van die Excel spreadsheet verskil van die term waarde as gevolg van die kort tydperk kyk terug. Hierdie sigblad gaan net terug 30 periodes, wat beteken dat die invloed van die eenvoudige bewegende gemiddelde het 20 periodes om te ontbind het. StockCharts gaan terug ten minste 250-tydperke (tipies veel verder) vir sy berekeninge sodat die gevolge van die eenvoudige bewegende gemiddelde in die eerste berekening volledig verkwis. Die sloerfaktor Hoe langer die bewegende gemiddelde, hoe meer die lag. 'N 10-dag eksponensiële bewegende gemiddelde pryse sal baie nou omhels en draai kort ná pryse draai. Kort bewegende gemiddeldes is soos spoed bote - ratse en vinnige te verander. In teenstelling hiermee het 'n 100-daagse bewegende gemiddelde bevat baie afgelope data wat dit stadiger. Meer bewegende gemiddeldes is soos see tenkwaens - traag en stadig om te verander. Dit neem 'n groter en meer prysbewegings vir 'n 100-daagse bewegende gemiddelde kursus te verander. bo die grafiek toon die SampP 500 ETF met 'n 10-dag EMO nou na aanleiding van pryse en 'n 100-dag SMA maal hoër. Selfs met die Januarie-Februarie afname, die 100-dag SMA gehou deur die loop en nie draai. Die 50-dag SMA pas iewers tussen die 10 en 100 dae bewegende gemiddeldes wanneer dit kom by die lag faktor. Eenvoudige vs Eksponensiële Bewegende Gemiddeldes Hoewel daar duidelike verskille tussen eenvoudige bewegende gemiddeldes en eksponensiële bewegende gemiddeldes, een is nie noodwendig beter as die ander. Eksponensiële bewegende gemiddeldes minder lag en is dus meer sensitief vir onlangse pryse - en onlangse prysveranderings. Eksponensiële bewegende gemiddeldes sal draai voor eenvoudige bewegende gemiddeldes. Eenvoudige bewegende gemiddeldes, aan die ander kant, verteenwoordig 'n ware gemiddelde van die pryse vir die hele tydperk. As sodanig, kan eenvoudig bewegende gemiddeldes beter geskik wees om ondersteuning of weerstand vlakke te identifiseer. Bewegende gemiddelde voorkeur hang af van doelwitte, analitiese styl en tydhorison. Rasionele agente moet eksperimenteer met beide tipes bewegende gemiddeldes, asook verskillende tydsraamwerke om die beste passing te vind. Die onderstaande grafiek toon IBM met die 50-dag SMA in rooi en die 50-dag EMO in groen. Beide 'n hoogtepunt bereik in die einde van Januarie, maar die daling in die EMO was skerper as die afname in die SMA. Die EMO opgedaag het in die middel van Februarie, maar die SMA voortgegaan laer tot aan die einde van Maart. Let daarop dat die SMA opgedaag het meer as 'n maand nadat die EMO. Lengtes en tydsraamwerke Die lengte van die bewegende gemiddelde is afhanklik van die analitiese doelwitte. Kort bewegende gemiddeldes (20/05 periodes) is die beste geskik vir tendense en handel kort termyn. Rasionele agente belangstel in medium termyn tendense sou kies vir langer bewegende gemiddeldes wat 20-60 periodes kan verleng. Langtermyn-beleggers sal verkies bewegende gemiddeldes met 100 of meer periodes. Sommige bewegende gemiddelde lengtes is meer gewild as ander. Die 200-daagse bewegende gemiddelde is miskien die mees populêre. As gevolg van sy lengte, dit is duidelik 'n langtermyn-bewegende gemiddelde. Volgende, die 50-dae - bewegende gemiddelde is baie gewild vir die medium termyn tendens. Baie rasionele agente gebruik die 50-dag en 200-dae - bewegende gemiddeldes saam. Korttermyn, 'n 10-dae bewegende gemiddelde was baie gewild in die verlede, want dit was maklik om te bereken. Een van die nommers bygevoeg eenvoudig en verskuif die desimale punt. Tendens Identifikasie Dieselfde seine gegenereer kan word met behulp van eenvoudige of eksponensiële bewegende gemiddeldes. Soos hierbo aangedui, die voorkeur hang af van elke individu. Hierdie voorbeelde sal onder beide eenvoudige en eksponensiële bewegende gemiddeldes gebruik. Die term bewegende gemiddelde is van toepassing op beide eenvoudige en eksponensiële bewegende gemiddeldes. Die rigting van die bewegende gemiddelde dra belangrike inligting oor pryse. 'N stygende bewegende gemiddelde wys dat pryse oor die algemeen is aan die toeneem. A val bewegende gemiddelde dui daarop dat pryse gemiddeld val. 'N stygende langtermyn bewegende gemiddelde weerspieël 'n langtermyn - uptrend. A val langtermyn bewegende gemiddelde weerspieël 'n langtermyn - verslechtering neiging. bo die grafiek toon 3M (MMM) met 'n 150-dag eksponensiële bewegende gemiddelde. Hierdie voorbeeld toon hoe goed bewegende gemiddeldes werk wanneer die neiging is sterk. Die 150-dag EMO van die hand gewys in November 2007 en weer in Januarie 2008. Let daarop dat dit 'n 15 weier om die rigting van hierdie bewegende gemiddelde om te keer. Hierdie nalopend aanwysers identifiseer tendens terugskrywings as hulle voorkom (op sy beste) of nadat hulle (in die ergste geval) voorkom. MMM voortgegaan laer in Maart 2009 en daarna gestyg 40-50. Let daarop dat die 150-dag EMO nie opgedaag het nie eers na hierdie oplewing. Sodra dit gedoen het, maar MMM voortgegaan hoër die volgende 12 maande. Bewegende gemiddeldes werk briljant in sterk tendense. Double CROSSOVER twee bewegende gemiddeldes kan saam gebruik word om crossover seine op te wek. In tegniese ontleding van die finansiële markte. John Murphy noem dit die dubbele crossover metode. Double CROSSOVER behels een relatief kort bewegende gemiddelde en een relatiewe lang bewegende gemiddelde. Soos met al die bewegende gemiddeldes, die algemene lengte van die bewegende gemiddelde definieer die tydraamwerk vir die stelsel. 'N Stelsel met behulp van 'n 5-dag EMO en 35-dag EMO sal geag kort termyn. 'N Stelsel met behulp van 'n 50-dag SMA en 200-dag SMA sal geag medium termyn, miskien selfs 'n lang termyn. N bullish crossover vind plaas wanneer die korter bewegende gemiddelde kruise bo die meer bewegende gemiddelde. Dit is ook bekend as 'n goue kruis. N lomp crossover vind plaas wanneer die korter bewegende gemiddelde kruise onder die meer bewegende gemiddelde. Dit staan ​​bekend as 'n dooie kruis. Bewegende gemiddelde CROSSOVER produseer relatief laat seine. Na alles, die stelsel werk twee sloerende aanwysers. Hoe langer die bewegende gemiddelde periodes, hoe groter is die lag in die seine. Hierdie seine werk groot wanneer 'n goeie tendens vat. Dit sal egter 'n bewegende gemiddelde crossover stelsel baie whipsaws produseer in die afwesigheid van 'n sterk tendens. Daar is ook 'n driedubbele crossover metode wat drie bewegende gemiddeldes behels. Weereens, is 'n sein gegenereer wanneer die kortste bewegende gemiddelde kruisies die twee langer bewegende gemiddeldes. 'N Eenvoudige trippel crossover stelsel kan 5-dag, 10-dag en 20-dae - bewegende gemiddeldes te betrek. bo die grafiek toon Home Depot (HD) met 'n 10-dag EMO (groen stippellyn) en 50-dag EMO (rooi lyn). Die swart lyn is die daaglikse naby. Met behulp van 'n bewegende gemiddelde crossover gevolg sou gehad het drie whipsaws voor 'n goeie handel vang. Die 10-dag EMO gebreek onder die 50-dag EMO die einde van Oktober (1), maar dit het nie lank as die 10-dag verhuis terug bo in die middel van November (2). Dit kruis duur langer, maar die volgende lomp crossover in Januarie (3) het plaasgevind naby die einde van November prysvlakke, wat lei tot 'n ander geheel verslaan. Dit lomp kruis het nie lank geduur as die 10-dag EMO terug bo die 50-dag 'n paar dae later (4) verskuif. Na drie slegte seine, die vierde sein voorafskaduwing n sterk beweeg as die voorraad oor 20. gevorderde Daar is twee wegneemetes hier. In die eerste plek CROSSOVER is geneig om geheel verslaan. 'N Prys of tyd filter toegepas kan word om te voorkom dat whipsaws. Handelaars kan die crossover vereis om 3 dae duur voordat waarnemende of vereis dat die 10-dag EMO hierbo beweeg / onder die 50-dag EMO deur 'n sekere bedrag voor waarnemende. In die tweede plek kan MACD gebruik word om hierdie CROSSOVER identifiseer en te kwantifiseer. MACD (10,50,1) sal 'n lyn wat die verskil tussen die twee eksponensiële bewegende gemiddeldes te wys. MACD draai positiewe tydens 'n goue kruis en negatiewe tydens 'n dooie kruis. Die persentasie Prys ossillator (PPO) kan op dieselfde manier gebruik word om persentasie verskille te wys. Let daarop dat die MACD en die PPO is gebaseer op eksponensiële bewegende gemiddeldes en sal nie ooreen met eenvoudige bewegende gemiddeldes. Hierdie grafiek toon Oracle (ORCL) met die 50-dag EMO, 200-dag EMO en MACD (50,200,1). Daar was vier bewegende gemiddelde CROSSOVER oor 'n tydperk 2 1/2 jaar. Die eerste drie gelei tot whipsaws of slegte ambagte. A opgedoen tendens begin met die vierde crossover as ORCL gevorder tot die middel van die 20s. Weereens, bewegende gemiddelde CROSSOVER werk groot wanneer die neiging is sterk, maar produseer verliese in die afwesigheid van 'n tendens. Prys CROSSOVER bewegende gemiddeldes kan ook gebruik word om seine met 'n eenvoudige prys CROSSOVER genereer. N bullish sein gegenereer wanneer pryse beweeg bo die bewegende gemiddelde. N lomp sein gegenereer wanneer pryse beweeg onder die bewegende gemiddelde. Prys CROSSOVER kan gekombineer word om handel te dryf in die groter tendens. Hoe langer bewegende gemiddelde gee die toon aan vir die groter tendens en die korter bewegende gemiddelde word gebruik om die seine te genereer. 'N Mens sou kyk vir bullish prys kruise net vir pryse is reeds bo die meer bewegende gemiddelde. Dit sou wees die handel in harmonie met die groter tendens. Byvoorbeeld, as die prys is hoër as die 200-daagse bewegende gemiddelde, rasionele agente sal net fokus op seine wanneer prysbewegings bo die 50-dae - bewegende gemiddelde. Dit is duidelik dat, sou 'n skuif onder die 50-dae - bewegende gemiddelde so 'n sein voorafgaan, maar so lomp kruise sou word geïgnoreer omdat die groter tendens is up. N lomp kruis sou net dui op 'n nadeel binne 'n groter uptrend. 'N kruis terug bo die 50-dae - bewegende gemiddelde sou 'n opswaai in pryse en voortsetting van die groter uptrend sein. Die volgende grafiek toon Emerson Electric (EMR) met die 50-dag EMO en 200-dag EMO. Die voorraad bo verskuif en bo die 200-daagse bewegende gemiddelde gehou in Augustus. Daar was dips onder die 50-dag EMO vroeg in November en weer vroeg in Februarie. Pryse het vinnig terug bo die 50-dag EMO te lomp seine (groen pyle) voorsien in harmonie met die groter uptrend. MACD (1,50,1) word in die aanwyser venster te prys kruise bo of onder die 50-dag EMO bevestig. Die 1-dag EMO is gelyk aan die sluitingsprys. MACD (1,50,1) is positief wanneer die naby is bo die 50-dag EMO en negatiewe wanneer die einde is onder die 50-dag EMO. Ondersteuning en weerstand bewegende gemiddeldes kan ook dien as ondersteuning in 'n uptrend en weerstand in 'n verslechtering neiging. 'N kort termyn uptrend kan ondersteuning naby die 20-dag eenvoudig bewegende gemiddelde, wat ook gebruik word in Bollinger Bands vind. 'N langtermyn-uptrend kan ondersteuning naby die 200-dag eenvoudig bewegende gemiddelde, wat is die mees gewilde langtermyn bewegende gemiddelde vind. As Trouens, die 200-daagse bewegende gemiddelde ondersteuning of weerstand bloot omdat dit so algemeen gebruik word aan te bied. Dit is amper soos 'n self-fulfilling prophecy. bo die grafiek toon die NY Saamgestelde met die 200-dag eenvoudig bewegende gemiddelde van middel 2004 tot aan die einde van 2008. Die 200-dag voorsien ondersteuning talle kere tydens die vooraf. Sodra die tendens omgekeer met 'n dubbele top ondersteuning breek, die 200-daagse bewegende gemiddelde opgetree as weerstand rondom 9500. Moenie verwag presiese ondersteuning en weerstand vlakke van bewegende gemiddeldes, veral langer bewegende gemiddeldes. Markte word gedryf deur emosie, wat hulle vatbaar vir overschrijdingen maak. In plaas van presiese vlakke, kan bewegende gemiddeldes gebruik word om ondersteuning of weerstand sones identifiseer. Gevolgtrekkings Die voordele van die gebruik bewegende gemiddeldes moet opgeweeg word teen die nadele. Bewegende gemiddeldes is tendens volgende, of nalopend, aanwysers wat altyd 'n stap agter sal wees. Dit is nie noodwendig 'n slegte ding al is. Na alles, die neiging is jou vriend en dit is die beste om handel te dryf in die rigting van die tendens. Bewegende gemiddeldes te verseker dat 'n handelaar is in ooreenstemming met die huidige tendens. Selfs al is die tendens is jou vriend, sekuriteite spandeer 'n groot deel van die tyd in die handel reekse, wat bewegende gemiddeldes ondoeltreffend maak. Sodra 'n tendens, sal bewegende gemiddeldes jy hou in nie, maar ook gee laat seine. Don039t verwag om te verkoop aan die bokant en koop aan die onderkant met behulp van bewegende gemiddeldes. Soos met die meeste tegniese ontleding gereedskap, moet bewegende gemiddeldes nie gebruik word op hul eie, maar in samewerking met ander aanvullende gereedskap. Rasionele agente kan gebruik bewegende gemiddeldes tot die algehele tendens definieer en gebruik dan RSI om oorkoop of oorverkoop vlakke te definieer. Toevoeging van bewegende gemiddeldes te StockCharts Charts bewegende gemiddeldes is beskikbaar as 'n prys oortrek funksie op die SharpCharts werkbank. Die gebruik van die Overlays aftrekkieslys, kan gebruikers kies óf 'n eenvoudige bewegende gemiddelde of 'n eksponensiële bewegende gemiddelde. Die eerste parameter word gebruik om die aantal tydperke stel. 'N opsionele parameter kan bygevoeg word om te spesifiseer watter prys veld moet gebruik word in die berekeninge - O vir die Ope, H vir die High, L vir die lae, en C vir die buurt. 'N Komma word gebruik om afsonderlike parameters. Nog 'n opsionele parameter kan bygevoeg word om die bewegende gemiddeldes te skuif na links (verlede) of regs (toekomstige). 'N negatiewe getal (-10) sou die bewegende gemiddelde skuif na links 10 periodes. 'N Positiewe nommer (10) sou die bewegende gemiddelde na regs skuif 10 periodes. Veelvuldige bewegende gemiddeldes kan oorgetrek die prys plot deur eenvoudig 'n ander oortrek lyn aan die werkbank. StockCharts lede kan die kleure en styl verander om te onderskei tussen verskeie bewegende gemiddeldes. Na die kies van 'n aanduiding, oop Advanced Options deur te kliek op die klein groen driehoek. Gevorderde Opsies kan ook gebruik word om 'n bewegende gemiddelde oortrek voeg tot ander tegniese aanwysers soos RSI, CCI, en Deel. Klik hier vir 'n lewendige grafiek met 'n paar verskillende bewegende gemiddeldes. Die gebruik van bewegende gemiddeldes met StockCharts skanderings Hier is 'n paar monster skanderings wat StockCharts lede kan gebruik om te soek na verskeie bewegende gemiddelde situasies: Bul bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n stygende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5 - Day EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde is stygende solank dit handel bo sy vlak vyf dae gelede. N bullish kruis vind plaas wanneer die 5-dag EMO bo die 35-dag EMO op bogemiddelde volume beweeg. Lomp bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n dalende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5-dag EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde val solank dit handel onder sy vlak vyf dae gelede. N lomp kruis vind plaas wanneer die 5-dag EMO beweeg onder die 35-dag EMO op bogemiddelde volume. Verdere Studie John Murphy039s boek het 'n hoofstuk gewy aan bewegende gemiddeldes en hul onderskeie gebruike. Murphy dek die voor - en nadele van bewegende gemiddeldes. Daarbenewens Murphy wys hoe bewegende gemiddeldes met Bollinger Bands en kanaal gebaseer handel stelsels. Tegniese ontleding van die finansiële markte John Murphy

No comments:

Post a Comment